A Note on the Cone Restriction Conjecture in the Cylindrically Symmetric Case
نویسنده
چکیده
Abstract. In this note, we present two arguments showing that the classical linear adjoint cone restriction conjecture holds for the class of functions supported on the cone and invariant under the spatial rotation in all dimensions. The first is based on a dyadic restriction estimate, while the second follows from a strengthening version of the Hausdorff-Young inequality and the Hölder inequality in the Lorentz spaces.
منابع مشابه
Sharp Linear and Bilinear Restriction Estimates for Paraboloids in the Cylindrically Symmetric Case
For cylindrically symmetric functions dyadically supported on the paraboloid, we obtain a family of sharp linear and bilinear adjoint restriction estimates. As corollaries, we first extend the ranges of exponents for the classical linear or bilinear adjoint restriction conjectures for such functions and verify the linear adjoint restriction conjecture for the paraboloid. We also interpret the r...
متن کاملTorsion of cylindrically poroelasic circular shaft with radial inhomogeneity .some exact solutions for extruder
Torsion of elastic and poroelastic circular shaft of radially inhomogeneous, cylindrically orthotropic materials is studied with emphasis on the end effects example for extruder. To examine the conjecture of Saint-Venant’s torsion, we consider torsion of circular shaft with one end fixed and the other end free on which tractions that results in a pure torque are prescribed arbitrarily over the fr...
متن کاملTorsion of cylindrically poroelasic circular shaft with radial inhomogeneity .some exact solutions for extruder
Torsion of elastic and poroelastic circular shaft of radially inhomogeneous, cylindrically orthotropic materials is studied with emphasis on the end effects example for extruder. To examine the conjecture of Saint-Venant’s torsion, we consider torsion of circular shaft with one end fixed and the other end free on which tractions that results in a pure torque are prescribed arbitrarily over the fr...
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007